Optimisacion del ancho de banda (Networking Basics)

Managua, Nicaragua, 31/8/9 - 11/9/9

Do you know ...

- how to use binary operators?
- the difference between L2 and L3 addresses?
- the difference between L2 and L3 networks?
- how subnetting works?
- the difference between Routing and Switching?
- what NAT is and how it is used?

Agenda

- Evolution of computer networks
- Protocol suites (ISO/OSI vs TCP/IP)
- Most common network device types (classified by layers where they operate and functionalities)
- L2 networks VS L3 networks
- Basic network design rules
- Basics on Addressing/Subnetting
- Common Network Services
- Where does Linux fit into the network?

Evolution of the role of computer networks

10 Years ago:

- Can the use of "the network" come useful to this problem?

• Today:

- Is there a valid reason not to use "the network" to address this problem?

Future

- I can't imagine a world without the Internet!

The most common slide you'll find in a "Networking Basics" presentation

Application Presentation Session **Transport** Network Data Link MAC **Physical**

ISO-OSI

Application

Transport

Network

Data Link MAC

Physical

TCP/IP

What's wrong here?

Why a network stack?

- Need of rules
- Need to reduce the design complexity
- Distinction between the functions of the upper and lower layers

 Peer-2-Peer communication + encapsulation.

The *Physical* Layer

- Transmission media
 - Coaxial, UTP, Fiber, Wireless, ..

Signaling of bits (RZ, NRZ,

Timing of bits (Sync vs Async)

Physical

The *Data-Link* Layer (1/2)

- Framing
- Error Detection/Correction (CRC)
- Simplex/Half/Full duplex

•

Data Link

Physical

TCP/IP

The *Data-Link* Layer, (2/2) The Medium Access Control (MAC)

- Collision free
 - Static (TDMA, ...)
 - Dynamic (Token, Bitmap, ...)
- Not Collision Free
 - CSMA [p-persistent] /CD
- Wireless mediums use different algorithms. (ask the wireless gurus in the room ...)

TCP/IP

The *Network* Layer

- Here is where the interesting stuff starts ...
 - Physical to logical boundary
 - End-to-end hosts communication
 - static/dynamic routing, addressing and subnetting, ...
 - Fragmentation/Defragmentation

- ...

The *Transport* Layer

- (Logical) Connection multiplexing
- Flow control
- Error detection (data corruption)
- ...

- Most common transport protocols:
 - UDP (unreliable)
 - TCP (reliable)
 - ICMP (control data)

TCP/IP

The *Application* Layer

 This is the layer where the applications (users interface with) are located.

TCP/IP

Let's assign few common features to the right layer ...

Network stacks ... everything clear, right? Let's check ...

What about Firewalls, Intrusion Detection Systems, etc?

Network size and topology

- Size
 - Local Area Network (LAN)

Wide Area Network (WAN)

The Internet

Network size and topology

What combinations do you think make more sense?

The L2/L3 de-facto standards

- Wired LANs
 - Ethernet
 - Fast/Giga/10-Giga
- Wireless LANs
 - 802.11b, ...
- Internet Protocol Version 4 (IPv4)
 - Its younger brother IPv6 is not yet as widely used as IPv4.

Network (IPv4) Data-Link (Ethernet)

Network (IPV4)

Data-Link (Ethernet)

Network (IPV (Ethernet)

Data-Link

Network (Ipv4) — Data-Link (Ethernet)

More on **Network<-->Data-Link**: Fragmentation (1/2)

- Fragmentation is needed each time the size of the block of data (PDU) a layer needs to transmit exceeds the maximum size handled by the lower layer.
- There are good reasons to avoid fragmentation whenever possible
 - PMTU, IPv6, ...
- Each layer uses a different name for its PDU (and the associated maximum/minimum sizes)
 - L1:Bit, L2:Frame, L3:Datagram L4:Segment, L5:Message
 - Generic: Packet

More on **Network<-->Data-Link**: Fragmentation (2/2)

More on the **Network** Layer

- Quick review of binary numbers/operators
- Addressing
- Subnetting
- Routing

Binary numbers

(MSB) $8^{th} 7^{th} 6^{th} 5^{th} 4^{th} 3^{rd} 2^{nd} 1^{st}$ (LSB)

- A Commonly used with broadcasts
- B Commonly used with netmasks

Binary Decimal Hex			A	A Binary Decimal Hex			B Binary Decimal Hex			
00000000	0	0x00		0000000	0	0x00		11111111	255	0xFF
0000000	1	0x01		0000000 1	1	0x01		1111111 0	254	0xFE
00000010	2	0x02		00000011	3	0x03		111111 00	252	0xFC
00000 1 00	4	0x04		00000 111	7	0x07		11111 000	248	0xF8
0000 1 000	8	80x0		0000 1111	15	0x0F		1111 0000	240	0xF0
000 1 0000	16	0x10		000 11111	31	0x1F		111 00000	224	0xE0
00 1 00000	32	0x20		00 11111	63	0x3F		11 000000	192	0xC0
01000000	64	0x40		0 111111	. 127	0x7F		1 0000000	128	08x0
10000000	128	0x80		11111111	. 255	0xFF		00000000	0	0x00

Binary operators

AND		0	1	
C)	0	0	-
1	•	0	1	_

<u>OR</u>	0	1
0	0	1
1	1	1

There are many more but we need only those two in this class

32 bits

They range from 0.0.0.0 to 255.255.255.255
 (more than 4 billions addresses)

It consists of two components:

IP address: X.Y.Z.K netmask 255.255.250 or

IP address: X.Y.Z.K/24

- Given an IP address, the netmask (and the broadcast) address is derived from its class (but you can change both)
- Public VS Private addresses
- Unicast, Multicast, Broadcast addresses

	From	То	#Networks	#Hosts per network
Class A	0.0.0.0	127.255.255.255	127	16.777.216
Class B	128.0.0.0	192.255.255.255	16.129	65.536
Class C	192.0.0.0	223.255.255.255	2.097.152	256
Class D	224.0.0.0	239.255.255.255		
Class E	240.0.0.0	255.255.255.255		

IP addr: 140.105.16.50

Class B
Default Netmask is 255.255.0.0 (or /16)
Default Broadcast is 140.105.255.255

Private Addresses

```
• 10.0.0.0/8
```

- 1 x Class A 10 = 00001010
- 172.16.0.0/16 16 x Class B 172 = 10101100
- 192.168.0.0/16 256 x Class C 192 = 11000000

• 127.0.0.0/8 loopback (valid only on the local host)

Unicast, Broadcast, Multicast

- The use of broadcast and multicast addresses is a convenient way for sending a packet to multiple recipients (link layer protocols use them too).
 - A broadcast message is addressed at all the hosts of a given network (or subnet).
 - Local VS Directed broadcasts
 - A multicast message is addressed at those hosts that subscribed to the associated multicast group.

The broadcast is	Network address	Host address	
built (by default) by setting to 1 all the b	its		
of the host address	Network address	1111	

Subnetting

- The host address is split into two parts:
 - Subnet number
 - Host address

 It is no longer needed to use the default netmask derived from the class (i.e., /24, /16, /8)

Example of subnetting (1/2)

 The IP address and the associated netmask together tell you what other (neighbor) IP addresses are directly connected (i.e., only 1 hop away).

192.168.1.100/24 Default b

Subnet address: 192.168.1.0/24

Network address: 192.168.1.0

Default broadcast: 192.168.1.255

Range of addresses: 192.168.1.1 ... 192.168.1.255

#Hosts: 256-2 = 254

Example of subnetting (2/2)

Let's suppose we wanted to create two subnets of the same size

Subnet address: 192.168.1.0/24 Network address: 192.168.1.0 192.168.1.255 Default broadcast:

Range of addresses: 192.168.1.1 ... 192.168.1.255

#Hosts: 256-2 = 254

Subnet address: 192.168.1.0/25 Network address: 192.168.1.0 192.168.1.127 Default broadcast:

Range of addresses: 192.168.1.1 ... 192.168.1.123

#Hosts: 128-2 = 126

Subnet address: 192.168.1.128/25 Network address: 192.168.1.128 192.168.1.255 Default broadcast:

Range of addresses: 192.168.1.129 ... 192.168.1.255

#Hosts: 128-2 = 126

LAN1

LAN2

Router, Routing table --> ROUTING

- Routing is the action needed to make it possible for hosts located in different subnets to communicate
- A Router is a network device that routes traffic.
- A routing table is a collection of routes that define how to reach a given network/subnet.
- A basic router routes traffic based on the destination address
 - Other factors can be considered too (policy routing)

Example

Routing table

NOTE:

Depending on the router type, forwarding may need to be explicitly enabled

Destination	Next-hop	Interface
192.168.1.0/24	<direct></direct>	eth0
192.168.2.0/24	<direct></direct>	eth1
192.168.1.1/32	<local></local>	
192.168.2.1/32	<local></local>	

192.168.**1**.X/24

Destination	Next-hop	Interface
192.168.1.0/24 192.168.1.200/32	<direct></direct>	eth0

Routing table

192.168.**2**.X/24

Default routes

- A default route is used when there is no explicit route toward a given destination address.
- You can configure more than one default route (however it is not a common scenario)
- While hosts always use default routes, routers do not always need one.

Example of default route

Exercise

Summarization

- Simplifies routing tables ...
 - ... which allows routers to route faster

Subnetting

Summarization

Example of summarization

Summarization: playing with the bits

Routing

- Static VS Dynamic
- On a small network, static routing is sufficient.
 - Dynamic routing may be used anyway to provide some kind of high availability (to handle router failures)
- On bigger networks the use of dynamic routing becomes necessary
 - Depending on the size of the network and your exact requirements, different protocols are available for the job.

Routing VS Switching

- They operate at different layers, but:
 - L3 Routing tables VS L2 Forwarding databases
 - L3 Routing protocols *VS* L2 Spanning Tree
 - The hierarchical configuration model (access, distribution, core) applies to both.
- Switching is complex too!
 - Do not associate switching with the low-end 4port switches!
 - Spanning Tree Protocol/s
 - Virtual LANS (VLANS)

— ...

HUB

- Cheap
- Low performance

Can A talk to B while C talks to D?

Bridge

Case 1 From B1 to C1 Can A1 talk to A2 while C1 talks to D1?
Case 2 From B1 to C2 Can A1 talk to B1 while A2 talks to B2?

Case 3 From B2 to B1 Can A1 talk to B1 while C1 talks to C2?

SWITCH

(sort of multi-port bridge)

Can A talk to B while C talks to D?

What if a bridge/switch fails?

VERY IMPORTANT

- Never introduce any loop in a L2 network unless:
 - You know (very well) what you are doing
 - You rely on a protocol like the Spanning Tree to disable the redundant links

Let's play a little ...

Where is the router? Core D1 D2 Distribution **A2 A1 A3 A4** Access PC₃ PC4 PC5 PC6

Domain Name System (DNS)

DNS: 192.168.2.50

FIREFOX: --> http://sdu.ictp.it

Let's see how the host accesses the WEB server ... step by step ...

Any questions?

Copyright

- This presentation is released under the Creative Common License:
 - Attribution, Noncommercial, Share Alike 2.5
 - (http://creativecommons.org/licenses/by-nc-sa/2.5/)
- Attribution
 - You must attribute the work in the manner specified by the author or licensor.
- Noncommercial.
 - You may not use this work for commercial purposes.
- Share Alike.
 - If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one.